Rainbow Dash- AI với khả năng tự học cách đi lại

364
Robot công nghệ mới

Công nghệ trí thông minh nhân tạo (AI) ngày càng phát triển và được ứng dụng rộng khắp các lĩnh vực. Gần đây, trong một nghiên cứu của Google. Các kỹ sư đã tạo ra một AI trong hình dạng một chú robot 4 chân có khả nhăng tự học được cách di chuyển. Khả năng này giúp nó có thể di chuyển vô cùng tự nhiên. Như: tiến về phía trước, lùi lại phía sau, rẽ trái hay rẽ phải. Mặt khác với khả năng học hỏi vượt trội, nó có thể tự học cách di chuyển trên nhiều loại địa hình khác nhau. Đặt một bước tiến mới trong nền khoa học công nghệ. Cùng DiaOcKienGiang tìm hiểu về nó nhé.

Rainbow Dash với khả năng đi lại linh hoạt

Lĩnh vực chế tạo robot đã ngày càng tiến bộ. Trong đó có con robot mang lên Rainbow Dash với khả năng tự học cách đi bộ. Mẫu robot bốn chân này chỉ cần vài giờ để học cách đi lùi và tiến, rẽ phải và trái. Các nhà nghiên cứu từ Google, UC Berkeley và Viện Công nghệ Georgia đã xuất bản một bài báo trên trang ArXiv. Mô tả một kỹ thuật AI thống kê được gọi là học tăng cường sâu. Mà họ đã sử dụng để tạo ra thành tựu robot thông minh thế hệ mới.

Rainbow Dash robot-2

Hầu hết các kỹ thuật tự học thông minh trước đây đều diễn ra trong môi trường mô phỏng máy tính. Tuy nhiên, Rainbow Dash đã sử dụng công nghệ này để học cách đi bộ trong môi trường vật lý thực tế. Hơn nữa, nó có thể làm như vậy mà không cần một cơ chế giảng dạy chuyên dụng. Chẳng hạn như người hướng dẫn hoặc dữ liệu lập trình sẵn. Rainbow Dash đã thành công khi đi bộ trên nhiều bề mặt. Bao gồm nệm xốp mềm và thảm lau chân với nhiều điểm gấp khúc ngẫu nhiên.

Kỹ thuật hiện đại

Các kỹ thuật học sâu mà robot sử dụng bao gồm một loại học máy thử đúng và sai liên tục. Bằng cách tương tác nhiều lần với môi trường. Cách này tương tự như các trò chơi máy tính dùng phương pháp kỹ thuật số học cách chơi để giành chiến thắng. Hình thức học máy này khác biệt rõ rệt với học tập có giám sát hoặc không giám sát truyền thống. Trong đó các mô hình học máy đòi hỏi dữ liệu đào tạo phải được phân định rõ ràng. Học tăng cường sâu kết hợp các phương pháp học tăng cường với học sâu. Trong đó quy mô của học máy truyền thống được mở rộng đáng kể bằng sức mạnh của các phép tính toán khổng lồ.

robot AI-1

Mặc dù nhóm nghiên cứu cho rằng Rainbow Dash đã học cách tự đi lại. Sự can thiệp của con người vẫn đóng một vai trò quan trọng trong việc đạt được mục tiêu đó. Các nhà nghiên cứu đã phải tạo ra các đường ranh giới, robot phải học cách đi bộ để giữ cho nó không rời khỏi khu vực. Họ cũng đã phải nghĩ ra các thuật toán cụ thể để ngăn robot rơi xuống. Một trong số đó là tập trung vào việc kìm hãm chuyển động của robot. Để ngăn ngừa tai nạn và thiệt hại do rơi xuống, việc học tăng cường robot thường diễn ra trong môi trường kỹ thuật số. Trước khi các thuật toán được chuyển sang dạng vật lý để bảo vệ sự an toàn của robot.

Rainbow Dash- vẫn cần hoàn thiện hơn

Thành công của Rainbow Dash đạt được sau khoảng một năm. Các nhà nghiên cứu tìm ra cách cho robot học môi trường vật lý thực tế thay vì dạng ảo như trước đây. Chelsea Finn, giáo sư trợ lý Stanford liên kết với Google nói: “Loại bỏ con người khỏi quá trình học tập của robot là điều thực sự khó khăn. Bằng cách cho phép robot học tự chủ. Nó có thể hoạt động gần gũi hơn với khả năng học sâu tăng cường trong thế giới thực”.

Với sự phát triển của khoa học công nghệ hiện nay, cũng như trí tuệ nhân tạo AI. Hi vọng trong thời gian tới các nhà khoa học có thể tạo ra một Rainbow Dash hoàn thiện hơn. Một Rainbow Dash tự chủ hơn, không còn cần vào sự giúp đỡ của con người. Nghiên cứu này có thể giúp tạo ra những robot nhanh nhẹn hơn. Có khả năng thích nghi nhanh hơn với các loại địa hình khác nhau. Tiềm năng ứng dụng là rất lớn. Tuy nhiên dự án mới ở giai đoạn phát triển và còn rất nhiều thách thứ phải vượt qua.

Nguồn: vnexpress.net

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *